Saturday, January 18, 2020

Alternative Automobiles: The Electric Cars

As time approaches the 21st century, the automobile has become our major source of mass transportation. Everything about our culture and society has developed around this necessary form of travel. However, along with this necessity comes the issue of pollution to the environment. These great gasoline powered vehicles have contributed greatly to the impurity of our environment. The two prominent alternative fueled vehicles yet brought up are the Electric car (EV) and the Hybrid electric car (HEV). The ultimate clean, efficient car is the EV, a vehicle powered by an electrical motor, which is powered by batteries and controlled by an on-board computer. But there are questions about the mid-term viability of EV vehicles. This is due to unresolved technical issues of on-board energy storage capacity, high vehicle cost, and infrastructure limitations (e. g. , lack of public charging stations, repair/replacement facilities, and battery recycling centers). HEV vehicles are almost as clean as the EV†s and have vehicle performance comparable to that of today†s standard internal combustion engine vehicles. More important, such performance appears to be available in the mid-term future (e. g. , 2002), and therefore represents a practical, technically achievable alternative approach. Some suggest we develop both the EV†s and HEV†s in parallel, because many of the technical advancements can be shared and because either or both will be needed to achieve efficiency and clean air goals. Unlike EV or the HEV vehicles, motor vehicles generate more air pollution than any other human made machine. This air pollution, or toxic mixture of chemicals released by motor vehicles, is recognized as a major health hazard. According to the American Lung Association, this air pollution kills between 60,000 and 120,000 people in the United States each year and costs $93 billion dollars in medical bills. Some of these air-polluting greenhouse gases that are emitted or attributed to gasoline powered vehicles are chlorofluorocarbon (CFC†s), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and the precursors to tropospheric ozone – hydrocarbons (HC) and nitrogen oxides (NOx). These gasoline-powered vehicles are also a major source of carbon monoxide (CO). CFC†s are the most potent greenhouse gases on a per-unit mass basis. They now contribute nearly 24 percent of the total global warming effect. While incremental improvements can be made in standard vehicles, regulators and auto makers have defined at least two new vehicle classes that may provide a step-wise improvement in emissions. These are the Electric Vehicle and the Hybrid Electric Vehicle. Unlike an EV, an HEV utilizes the intermittent operation of a small engine to assist a typically battery-powered electric propulsion system. The electric motor propels the front wheels at low speeds. At higher speeds the internal combustion engine takes over. When the engine drives the vehicle, it automatically charges the batteries used for the electric motor, therefore making the battery pack a lot smaller. EV and HEV vehicles are a lot more beneficial to the environment than internal combustion engines. The EV vehicles have a zero tailpipe emission. Another major problem of motor vehicles is its unsafe nature after its life dies out. Automobile junkyards, which litter the American landscape, contain thousands upon thousands of old broken up cars. From such junkyards are the problem of oil, lead, and battery acids, which enter the ground. However the lead in the batteries of electric vehicles is in a very stable form, unlike the trace amounts of lead in even unleaded gasoline and since electric vehicles do not contain oil or chlorofluorocarbons, they do not risk contaminating the area. Noise is also an advantage of getting an electric vehicle. Because motor vehicles have combustion motors, they tend to be loud and obnoxious. On the other hand, EV vehicles do not have a combustion engine; thus, they are noticeably quieter. Because the electric vehicle motors are also more efficient compared to motor vehicles, they are expected to last over a million miles compared to the motor vehicles† one hundred thousand miles. Initially, HEV vehicles are not expected to compete directly with standard vehicles on performance alone (e. g. , acceleration and range), but they are expected to offer benefits that a standard vehicle does not offer. Compared to today's standard vehicles, HEV vehicle will reduce local/regional pollution, by means of: increased vehicle mileage, (two times per gallon of fuel) , lower emissions per vehicle mile traveled. Propulsion systems that can be cycled off during stop-and-go driving, producing no emissions, fuels or fuel systems with reduced fuel evaporation and refueling losses. As with any new technology, there are obstructions to its ready acceptance by consumers. Initially there may be resistance to the vehicles' higher price and slightly reduced performance. Rugged and durable systems will be needed to provide credibility to a claim of long life with low emissions.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.